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Today’s Objectives

• Convex Optimization Algorithms

Disclaimer: Material used: 

• Convex Optimization for Signal Processing and 
Communications - From Fundamentals to Applications, C.Y. 
Chi, W.C. Li, C.H. Lin

• Signal Processing and Networking for Big Data Applications, 
Z Han, M Hong, D Wang, 2017

• Convex Optimization – S. Boyd and L. Vandenberghe
http://web.stanford.edu/~boyd/cvxbook/
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Standard form of optimization

• Problem domain

• Feasible set

• A problem is feasible if there exists at least one x ∈ 𝐶 ; 
infeasible if 𝐶 = ∅

• The optimization problem is said to be a convex optimization 
problem if the objective function and the set 𝐶 are convex
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Optimal solution

The optimal value p⋆ of the optimization problem is defined as

A point x is locally optimal (or a local minimizer ) if there is an 
r > 0 such

A feasible point x with is called 
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Optimality criterion

• Assume that  𝑓0 is differentiable, and that the associated 
optimization problem with the constraint set 𝐶 given by

is convex

• Then a point x ∈ 𝐶 is optimal if and only if
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Basic optimization method

Basic case
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Higher dimensions
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Contour representation of 
𝑓 𝑥 = 𝑥1

2 + 2𝑥2
2

General quadratic function

Contour of the 2D Rosenbrock function 

𝑓 𝑥 = 10(𝑥2 − 𝑥1
2)2 + (1 − 𝑥1 )

2



Inequality constrained problems
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Unconstrained minimization

Direct search algorithms

• These algorithms require an initial estimate to the optimum 
point, denoted by x0.

• With this estimate as starting point, the algorithm generates 
a sequence of estimates x0, x1, x2, . . . , by successively 
searching directly from each point in a direction of descent 
ui+1 to determine the next point.

• The process is terminated if either no further progress is 
made, or if a point xk is reached (for smooth functions) at 
which the first necessary condition ∇ f(xk) = 0 is sufficiently 
accurately satisfied
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Line search descent methods

• Descend direction
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First order methods

• Line search descent methods use the gradient vector ∇ f(x) 
to determine the search direction for each iteration

• The simplest and most famous of these methods is the 
method of steepest descent, first proposed by Cauchy in 
1847.
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steepest descent
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Orthogonal zigzagging behaviour of the steepest descent method



Second order linear search descent methods

These methods are based on Newton’s method for solving ∇ f(x) = 0

• Given x0

•

Modified version

• At iteration 

• Then find 

• And set
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Iterative Descent Methods
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Convergence criteria
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Constrained convex optimization
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Lagrange multipliers
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Duality
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KKT Condition
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Alternating Directions Method of Multipliers 
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The ADMM Algorithm
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The ADMM Algorithm
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Optimality of ADMM
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Convergence
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Matrix factorizations
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LU Decomposition
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LU example
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LU example (cont)
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Cholesky Factorization
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Eigenvector and Eigenvalue

• An eigenvector x of a linear transformation A is a non-zero 
vector that, when A is applied to it, does not change 
direction.

• Applying A to the eigenvector only scales the eigenvector by 
the scalar value λ, called an eigenvalue.
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Eigenvector and Eigenvalue

• We want to find all the eigenvalues of A:

• Which can we written as:

• Therefore:
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Eigenvector and Eigenvalue

• We can solve for eigenvalues by solving:

• Since we are looking for non-zero x, we can instead solve the 
above equation as:
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Properties

• The trace of a A is equal to the sum of its eigenvalues:

• The determinant of A is equal to the product of its 
eigenvalues

• The rank of A is equal to the number of non-zero eigenvalues 
of A.

• The eigenvalues of a diagonal matrix D = diag(d1, . . . dn) are 
just the diagonal entries d1, . . . dn
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Spectral theory

• We call an eigenvalue λ and an associated eigenvector an 
eigenpair. 

• The space of vectors where (A − λI) = 0 is often called the 
eigenspace of A associated with the eigenvalue λ. 

• The set of all eigenvalues of A is called its spectrum:
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Spectral theory

•The magnitude of the largest eigenvalue (in 
magnitude) is called the spectral radius

Where C is the space of all eigenvalues of A
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Spectral theory

• The spectral radius is bounded by infinity norm of a matrix:

• Proof: Let λ and v be an eigenpair of A:
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Diagonalization

• An n × n matrix A is diagonalizable if it has n linearly 
independent eigenvectors. 

• Most square matrices (in a sense that can be made 
mathematically rigorous) are diagonalizable: 
• Normal matrices are diagonalizable 

• Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are 
linearly independent.
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Diagonalization

•Eigenvalue equation:

• Where D is a diagonal matrix of the eigenvalues
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Diagonalization

• Eigenvalue equation:

• Assuming all λi’s are unique:

• Remember that the inverse of an orthogonal matrix is just its transpose and the eigenvectors 
are orthogonal
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Symmetric matrices

•Properties:
• For a symmetric matrix A, all the eigenvalues are real.
• The eigenvectors of A are orthonormal.
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Some applications of Eigenvalues

• PageRank 

• Schrodinger’s equation 

• PCA
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